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When a shock wave is propagated  in a med ium with decreasing 

density,  the ve loc i ty  of the  wave front can  increase  [1]. Below, we 
shal l  consider a s imi la r  p rob lem for a p lasma in a m a g n e t i c  f ield.  

It has been shown tha t  a strong magne tohydrodynamic  shock wave 

can  be a c c e l e r a t e d  when it  moves in an i dea l  p l a sma  with va r iab le  

densi ty  and va r i ab le  m a g n e t i c - f i e l d  strength, and the  spec i f ic  energy 
of a smal l  mass can  b e c o m e  very grea t .  

The  shock wave is acce l e r a t ed  in proport ion to the increase  in the 

Alfv~n ve loc i ty  in  front of the wave,  so that  the Mach number for the 

shock-wave  front w i l l  r e m a i n  constant.  

This a cce l e r a t i on  mechan i sm possibly plays a role  in  the genera-  

t ion of h igh -ene rgy  par t ic les  in the p l a sma  around stars and in outer 

space.  

1. S t a t emen t  of the  problem.  Plane  and cy l ind r i ca l  waves are con-  

sidered.  In the  i n i t i a l  s tate ,  the p l a sma  density P0 and m a g n e t i c - f i e l d  

s trength H0 in both cases are dis tr ibuted as 

po (x) = PooZq He (z) = Hop x~ (1.1) 

where P00, H00, q, and s a re  pos i t ive  constants and x is the d is tance  

from the coordinate  or igin ( i .e . ,  the radius in cy l ind r i ca l  coordinates) .  

The m a g n e t i c  vector is perpendicular  to the flow, and in the  cy l in -  

dr ica l  case i t  is also pa ra l l e l  to the axis .  The shock wave (p lane  or 

cy l indr i ca l )  moves toward the coordinate  origin:  from x = ~ to x = 0 

(figure). The figure also shows the instantaneous posi t ion of the front 

R and the density jump behind the wave front. The jump at the wave 

front is considered abrupt, i .e . ,  the structure of the  front is not con- 

sidered. 

The t i m e  reading is t aken  assuming that  the  wave front arrives at  
p o i n t x = 0  w h e n t = 0 .  Thus, 0 > t > - - ~ a n d , ' ~ > x _ > _ 0 .  

The viscosity and t he rma l  conduct iv i ty  of the p l a sma  are assumed 
to be zero, its e l e c t r i c a l  conduct iv i ty  is inf in i te ,  and diffusion pro- 

cesses are neg l ig ib le .  In the  unperturbed p lasma,  the  m a g n e t i c  pres- 

sure is considered to be much greater  than  the gas k ine t i c  pressure. 

The shock wave is assumed to be strong. 

2. Finding s e l f - s im i l a r  solutions. The formula ted  prob lem admi ts  
s e l f - s imi l a r  solutions. The p la sma  mot ion  behind the  shock-wave  front 

in the one -d imens iona l  nonstat ionary case is described by the follow- 

ing system of equations [2]: 

Op Op Ou 
-g/- + ~ ~ ;  + p-g~ + (~ - i) ~-~ = o ; 

Ou Ou Op H OH 
p W + p~ ~-z + - & - +  ~ - ~ 7  = 0 ; 

OH OH Ou u H  
-37- + u ~  + H ~ - x  + ( v - -  t ) - ~ - - =  O; 

Op Op + p u ~  x Tpu Op (2.1) 
~ ~ F -  ~P-~F _ - ~ - = 0  

where 7 is the ad i aba t i c  exponent ,  u = 1, 2, respec t ive ly ,  for the 
p lane  and cy l ind r i ca l  cases, and the r e m a i n i n g  symbols are  conven-  

t ional .  
To obtain a s e l f - s imi l a r  solution, we move  from the independent  

var iables  (x, t) to (~, t), where ~ is a d imensionless  var iab le :  

x 

= A x  (--  t) = - - ~ - .  (2.2) 

Here, A and cr are  constants and R is the coordinate  of the  shock- 

wave front. 
In re la t ion  (2.2), g varies  within the  l im i t s  

t . .<  ~ < ~r . 

~ P p s  n[ 

g r 

The ve loc i ty  of the shock-wave  front 

dR -la D = -a? = A ( - -  t) - ~ - t  . ( 2 . a )  

The unknown function u, p, p, and H of the independent  var iables  

(x, t) are  found as products of the functions of t and the  functions of 

the s e l f - s imi l a r  var iab les  ~: 

u(x , t )  = u l  (t)qo ( ~ ) ;  p ( z , t )  = p l ( t ) r  (~ ) ;  

p (x,t) = Pl (t) ~ (~); H (x,t) = Ht  (t) % (~)" (2.4) 

Following [1], functions of t are referred to as scales,  and functions 

of ~ are known as representat ives .  
If  we r e l a t e  the constants to the scales,  we can assume that the 

representat ives  are  dimensionless  and satisfy at  the wave front ( i .e . ,  

at  ~ = 1) the  condit ions 

(1) = ,  (t) = n (1) = Z (f) = I .  (2.5) 

The scales are eas i ly  found, using (2.2) and (2.3), from the known 

values  u -~ O, P0, P w_ 0, and H 0 i m m e d i a t e l y  ahead  of the wave  front 

and the universal  condit ions at  the front of a strong shock wave (the 

constants A and a s t i l l  r ema in  undefined) 

2 2 
u I (t) = ~ O (t) _ "r -q- I A ( -  t ) -~- i  ; 

+ 1 oooR q ct~ T -}- l pa (t) --~. ~ . , , =.  T--~-]" poe A ~  (-- tj-aq ; 

2 2 cr p~ (t) = ~ ~oonq (t) D2 (t) = ~-7 me A--q77+q (-- t) -~q-2~-~ ; 
(t) T + i T -4- l _ t r162 (2.6) 

n ,  = ~ - t  H~176 (t) = ~ - t  n e e 7  ( -  t)-  . 

I f  we substi tute (2.4) and (2.6) into (2.1). we obtain a system of 

equat ions in  t and ~. The condi t ion of separat ion of var iab les  al lows 

,as to de te rmine  the  index of s e l f - s im i l a r i t y  

i 
~ =  s - -  1/2q - -  t (2.7) 

It is impor tan t  to note  tha t  the  index of s e l f - s imi l a r i t y  is a func- 
t ion only of s and q, in the combina t ion  

= s - -  112q - -  l �9 (2.8) 

The values  s and q enter  the obta ined functions of t and R only in 

this  combina t ion  (below, i t  is assumed that  o ~ 1). For e x a m p l e ,  the 

front ve loc i ty  

t t)_~_ 1 A ~-1 
D__ (r l)  A (--  = Z ~ l / ~ a .  (2.9) 

It follows from the  l a t t e r  expression that  a wave  moving  toward 
the coordinate  origin R --" 0 can be acce l e r a t ed  as wel l  as retarded.  
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Unlimited wave acceleration occurs when 

= s - -  lI2q < 0 �9 (2.10) 

The fact that the index of self-similarity c~ is a function of s arid 

q in the combination o = s - q / 2  allows us to give the condition of 
acceleration or retardation a simple physical interpretation. The local 

Alfv~n velocity in an unperturbed plasma is determined by the same 
parameter o: 

Ho Hoox ~ Hoo xZ 

v A (z) = ]/'4-~po - -  21/ - ,Tpg x ' / ' q  - -  |/-4:900 " (2.ii) 

From a comparison of (2.9) and (2.11) it follows that the Mach 
number of the shock wave remains constant as it moves, i.e., 

D (x) 1F47 A (~-1) poo '/, 
M - - v A ( X ) - -  G-- I Hoo ~c~  �9 (2.12) 

Thus, it turns out that for the case in question the acceleration or 
retardation of the shock wave is determined only by the dependence of 
the Alfvdn velocity on the coordinate x in the unperturbed state. If 
the Alfv~n velocity increases toward the coordinate origin, the wave 

is accelerated proportionally. 
With acceleration, i.e., when o < 0, the mass velocity of the 

plasma increases without bound when R "-~ 0, within the framework 
of the assumptions that were made. Such accumulation of energy is 
accompanied, however, by a decrease in mass to zero (in the plane 
case, the specific mass per unit area), so that the total energy near 
the coordinate origin nevertheless tends to zero. 

If we use the found c~ value from (2.7), express the constant k in 
terms of the conserved Mach number M in (2.12), and indicate dif- 
ferentiation with respect to g by a prime, we obtain the following 
system of ordinary differential equations for the representatives, which 
are functions of the self-similar variable g: 

2~(p ' -L[2(p--(T-t-f)~]~ ' ,  ( T i l )  q ~ T 2 ( v - - t )  = 0 ;  

('r § Ip  , ( s 1 
2 ( T _  t) M2 %Z ~- (y-t- 1) -- --if- q) ~q)= O ; 

@ [29--  (T @ t) ~l Z' @ ('r -b l) s Z ~ - 2 ( v - - l )  g =  2g(p" 0 
% 

(2.13) 

This system of equations determines the motion behind the wave 
front. We can integrate it numerically for specific u, 7, q, s, and M 
values, which, together with formulas (2.6), gives a complete solution. 

The most interesting results are expressed by formulas (2.G); t can 
be expressed by (2.2) in terms of R and by formula (2.7) for the index 
of self-similarity. These formulas determine the conditions of wave 
acceleration, i.e., the energy cumulation. 

The index of self-similarity a can be obtained not only from the 
condition of separation of variables, as was done above, but also from 
considerations of dimensionality. Under the conditions of the problem, 
there are only two determining dimensional constants with independent 
dimensionalities (,o00 and H00), a fact which makes it possible to de- 
termine c< It is important to note that c~ is the same for the plane and 
cylindrical cases, so that the dependence of wave-front velocity on 
distance to the coordinate origin is the same, although the flow be- 

hind the front differs (see Eq. (2.1)). 
Conservation of the Math number for the moving shock wave (see 

(2.12)) occurs in both the plane and cylindrical cases, k similar con- 
chsion about conservation of Mach number follows from [3], in which 
a self-similar magnetohydrodynamie shock wave from a cylindrical 
explosion was considered. Essentially different problerns were solved 
in [3] and in the present paper. 
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